Поиск в словарях
Искать во всех

Большая советская энциклопедия - литий

 

Литий

литий
Литий (лат. Lithium), Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Природный Л. состоит из двух стабильных изотопов — 6Li (7,42%) и 7Li (92,58%). Л. был открыт в 1817 шведским химиком А. Арфведсоном в минерале петалите; название от греч. lithos — камень. Металлический Л. впервые получен в 1818 английским химиком Г. Дэви. Распространение в природе. Л. — типичный элемент земной коры (содержание 3,2?10-3% по массе), он накапливается в наиболее поздних продуктах дифференциации магмы — пегматитах. В мантии мало Л. — в ультраосновных породах всего 5?10-3% (в основных 1,5?10-3%, средних — 2?10-3%, кислых 4?10-3%). Близость ионных радиусов Li+, Fe2+ и Mg2+ позволяет Л. входить в решетки магнезиально-железистых силикатов — пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов Л. (силикаты, фосфаты и др.). Все они редкие (см. Литиевые руды). В биосфере Л. мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5?10-5%). Промышленные месторождения Л. связаны как с магматическими породами (пегматиты, пневматолиты), так и с биосферой (соленые озера). Физические и химические свойства. Компактный Л. — серебристо-белый металл, быстро покрывающийся темно-серым налетом, состоящим из нитрида Li3N и окиси Li2O. При обычной температуре Л. кристаллизуется в кубической объемноцентрированной решетке, а = 3,5098 . Атомный радиус 1,57 , ионный радиус Li+ 0,68 . Ниже -195°С решетка Л. гексагональная плотноупакованная. Л. — самый легкий металл; плотность 0,534 г/см3 (20°С); tпл. 180,5°С, tkип. 1317°С. Удельная теплоемкость (при 0—100°С) 3,31(103 дж/(кг?К), т. е. 0,790 кал/(г·град); термический коэффициент линейного расширения 5,6?10-5. Удельное электрическое сопротивление (20°С) 9,29?10-8 ом·м (9,29 мком·см); температурный коэффициент электрического сопротивления (0—100°С) 4,50?10-3. Л. парамагнитен. Металл весьма пластичен и вязок, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку. Твердость по Моосу 0,6 (тверже, чем Na и К), легко режется ножом. Давление истечения (15—20°С) 17 Мн/м2 (1,7 кгс/мм2). Модуль упругости 5 Гн/м2 (500 кгс/мм2), предел прочности при растяжении 116 Мн/м2 (11,8 кгс/мм2), относительное удлинение 50—70%. Пары Л. окрашивают пламя в карминово-красный цвет. Конфигурация внешней электронной оболочки атома Л. 2s1; во всех известных соединениях он одновалентен. При взаимодействии с кислородом или при нагревании на воздухе (горит голубым пламенем) Л. образует окись Li2O (перекись Li2O2 получается только косвенным путем). С водой реагирует менее энергично, чем др. щелочные металлы, при этом образуются гидроокись LiOH и водород. Минеральные кислоты энергично растворяют Li (стоит первым в ряду напряжений, его нормальный электродный потенциал — 3,02 в). Л. соединяется с галогенами (с йодом при нагревании), образуя галогениды (важнейший — лития хлорид). При нагревании с серой Л. дает сульфид Li2S, а с водородом — лития гидрид. С азотом Л. медленно реагирует уже при комнатной температуре, энергично — при 250°С с образованием нитрида Li3N. С фосфором Л. непосредственно не взаимодействует, но в специальных условиях могут быть получены фосфиды Li3P, LiP, Li2P2. Нагревание Л. с углеродом приводит к получению карбида Li2C2, с кремнием — силицида Л. Бинарные соединения Л. — Li2O, LiH, Li3N, Li2C2, LiCI и др., a также LiOH весьма реакционноспособны; при нагревании или плавлении они разрушают многие металлы, фарфор, кварц и др. материалы. Карбонат (см. Лития карбонат), фторид LiF, фосфат Li3PO4 и др. соединения Л. по условиям образования и свойствам близки к соответствующим производным магния и кальция. Л. образует многочисленные литийорганические соединения, что определяет его большую роль в органическом синтезе. Л. — компонент многих сплавов. С некоторыми металлами (Mg, Zn, Al) он образует твердые растворы значительной концентрации, со многими — интерметаллиды (LiAg, LiHg, LiMg2, LiAl и мн. др.). Последние часто весьма тверды и тугоплавки, незначительно изменяются на воздухе; некоторые из них — полупроводники. Изучено более 30 бинарных и ряд тройных систем с участием Л.; соответствующие им сплавы уже нашли применение в технике. Получение и применение. Соединения Л. получаются в результате гидрометаллургической переработки концентратов — продуктов обогащения литиевых руд. Основной силикатный минералсподумен перерабатывают по известковому, сульфатному и сернокислотному методам. В основе первого — разложение сподумена известняком при 1150—1200°С: Li2O?Al2O3?4SiO2 + 8CaCO3 = Li2OAl2O3 + 4(2CaO?SiO2) + 8CO2. При выщелачивании спека водой в присутствии избытка извести алюминат Л. разлагается с образованием гидроокиси Л.: Li2O?Al2O3 + Ca(OH)2 = 2LiOH + CaO?Al2O3. По сульфатному методу сподумен (и др. алюмосиликаты) спекают с сульфатом калия: Li2O?Al2O3?4SiO2 + K2SO4 = Li2SO4 + K2O?Al2O3?4SiO2. Сульфат Л. растворяют в воде и из его раствора содой осаждают карбонат Л.: Li2SO4 + Na2CO3 = Li2CO3 + Na2SO4. По сернокислотному методу также получают сначала раствор сульфата Л., а затем карбонат Л.; сподумен разлагают серной кислотой при 250—300°С (реакция применима только для b-модификации сподумена): b-Li2O?Al2O3?4SiO2 + H2SO4 = Li2SO4 + H2O?Al2O3?4SiO2. Метод используется для переработки руд, необогащенных сподуменом, если содержание в них Li2O не менее 1%. Фосфатные минералы Л. легко разлагаются кислотами, однако по более новым методам их разлагают смесью гипса и извести при 950—1050°С с последующей водной обработкой спеков и осаждением из растворов карбоната Л. Металлический Л. получают электролизом расплавленной смеси хлоридов Л. и калия при 400—460°С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и др. материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом — железные стержни. Черновой металлический Л. содержит механические включения и примеси (К, Mg, Ca, Al, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси — рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения Л. Важнейшая область применения Л. — ядерная энергетика. Изотоп 6Li — единственный промышленный источник для производства трития (см. Водород) по реакции: Сечения захвата тепловых нейтронов (s) изотопами Л. резко различаются: 6Li 945, 7Li 0,033; для естественной смеси 67 (в барнах); это важно в связи с техническим применением Л. — при изготовлении регулирующих стержней в системе защиты реакторов. Жидкий Л. (в виде изотопа 7Li) используется в качестве теплоносителя в урановых реакторах. Расплавленный 7LiF применяется как растворитель соединений U и Th в гомогенных реакторах. Крупнейшим потребителем соединений Л. является силикатная промышленность, в которой используют минералы Л., LiF, Li2CO3 и многие специально получаемые соединения. В черной металлургии Л., его соединения и сплавы широко применяют для раскисления, легирования и модифицирования многих марок сплавов. В цветной металлургии литием обрабатывают сплавы для получения хорошей структуры, пластичности и высокого предела прочности. Хорошо известны алюминиевые сплавы, содержащие всего 0,1% Л., — аэрон и склерон; помимо легкости, они обладают высокой прочностью, пластичностью, стойкостью против коррозии и очень перспективны для авиастроения. Добавка 0,04% Л. к свинцово-кальциевым подшипниковым сплавам повышает их твердость и понижает трение. Соединения Л. используются для получения пластичных смазок. По значимости в современной технике Л. — один из важнейших редких элементов. В. Е. Плющев. Литий в организме. Л. постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно. Установлено, что у растений Л. повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов в листьях (томаты) и синтез никотина (табак). Способность концентрировать Л. сильнее всего выражена среди морских организмов у красных и бурых водорослей, а среди наземных растений — у представителей семейства Ranunculaceae (василистник, лютик) и семейства Solanaceae (дереза). У животных Л. концентрируется главным образом в печени и легких. Лит.: Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; Ландольт П., Ситтиг М., Литий, в кн.: Справочник по редким металлам, пер. с англ., М., 1965.
Рейтинг статьи:
Комментарии:

См. в других словарях

1.
  (лат. Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Название от греч. lithos - камень (открыт в минерале петалите). Серибристо-белый, самый легкий из металлов; плотность 0,533 г/см3, tплощадь 180,5°С. Химически очень активен, окисляется при обычной температуре; реагирует с азотом, образуя нитрид Li3N. Минералы - сподумен, лепидолит и др. Изотоп Li - единственный промышленный источник для производства трития. Литий используют для раскисления, легирования и модифицирования сплавов (напр., аэрона, склерона), как теплоноситель в ядерных реакторах, компонент сплавов на основе Mg и Al, анод в химических источниках тока; некоторые соединения лития входят в состав пластичных смазок, специальных стекол, термостойкой керамики, используются в медицине. ...
Большой энциклопедический словарь
2.
  (Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941, относится к щелочным металлам, tпл 180,54°C. Литий используют для изготовления анодов для химических источников тока, в производстве меди, сплавов с магнием, алюминием, кремнием, антифрикционных и других сплавов, как теплоноситель в ядерных реакторах, изотоп 6Li - для получения трития. Литий открыл в 1817 шведский химик Ю.А. Арфведсон, впервые получил английский ученый Г. Дэви в 1818. ...
Современный Энциклопедический словарь
3.
  (Li, ат. вес 7) - был открыт Арфведсоном в 1817 г. при анализе минерала петалита, затем он был найден им в лепидолите и во многих других минералах. Арфведсон указал на сходство Л. со щелочными металлами и назвал его Л. (от luJoV - камень) в знак того, что этот элемент он встретил впервые в минеральном царстве. Подобно калию и натрию, Li имеет обширное распространение в природе, но встречается в небольших количествах. Наиболее богатые минералы содержат не более 9 - 10% окиси Л. Li2O, напр. в монтебразите (фосфорно-кислая соль Л. и алюминия) ее находится до 9,8%, в трифилине (фосфорно-кислая соль железа, марганца и Л.) от 3,4% до 7,7%, в силикатах: криофиллите ? до 4, 1%, в лепидолите ? от 1,3% до 5,7% и пр. Л. найден в некоторых метеоритах, в морской воде, во многих реках и минеральных источниках, напр. в Карлсбаде, Mapиeнбаде, Баден-Бадене и пр., в некоторых растениях, напр. в табаке и пр. Металлический Li в свободном состоянии в природе не встречается подобно калию и натрию. Несмотря на все попытки, Арфведсону не удалось его выделить. В первый раз он был получен Брандесом при действии гальванического тока на окись, но Л. получилось так мало, что нельзя было изучить его...
Энциклопедия Брокгауза и Ефрона

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины